Stronger seasonal adjustment in leaf turgor loss point in lianas than trees in an Amazonian forest.

نویسندگان

  • Isabelle Maréchaux
  • Megan K Bartlett
  • Amaia Iribar
  • Lawren Sack
  • Jérôme Chave
چکیده

Pan-tropically, liana density increases with decreasing rainfall and increasing seasonality. This pattern has led to the hypothesis that lianas display a growth advantage over trees under dry conditions. However, the physiological mechanisms underpinning this hypothesis remain elusive. A key trait influencing leaf and plant drought tolerance is the leaf water potential at turgor loss point (πtlp). πtlp adjusts under drier conditions and this contributes to improved leaf drought tolerance. For co-occurring Amazonian tree (n = 247) and liana (n = 57) individuals measured during the dry and the wet seasons, lianas showed a stronger osmotic adjustment than trees. Liana leaves were less drought-tolerant than trees in the wet season, but reached similar drought tolerances during the dry season. Stronger osmotic adjustment in lianas would contribute to turgor maintenance, a critical prerequisite for carbon uptake and growth, and to the success of lianas relative to trees in growth under drier conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Causes of variation in leaf-level drought tolerance within an Amazonian forest

Amazonian tree communities have already been seriously impacted by extreme natural droughts, and intense droughts are predicted to increase in frequency. However, our current knowledge of Amazonian tree species’ responses to water stress remains limited, as plant trait databases include few drought tolerance traits, impeding the application and predictive power of models. Here we explored how l...

متن کامل

Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees

This study examined the linkage between xylem vulnerability, stomatal response to leaf water potential ( Y L ), and loss of leaf turgor in eight species of seasonally dry tropical forest trees. In order to maximize the potential variation in these traits species that exhibit a range of leaf habits and phenologies were selected. It was found that in all species stomatal conductance was responsiv...

متن کامل

Woody lianas increase in dominance and maintain compositional integrity across an Amazonian dam-induced fragmented landscape

Tropical forest fragmentation creates insular biological communities that undergo species loss and changes in community composition over time, due to area- and edge-effects. Woody lianas thrive in degraded and secondary forests, due to their competitive advantage over trees in these habitats. Lianas compete both directly and indirectly with trees, increasing tree mortality and turnover. Despite...

متن کامل

No evidence that elevated CO2 gives tropical lianas an advantage over tropical trees.

Recent studies indicate that lianas are increasing in size and abundance relative to trees in neotropical forests. As a result, forest dynamics and carbon balance may be altered through liana-induced suppression of tree growth and increases in tree mortality. Increasing atmospheric CO2 is hypothesized to be responsible for the increase in neotropical lianas, yet no study has directly compared t...

متن کامل

Lianas Have a Greater Competitive Effect Than Trees of Similar Biomass on Tropical Canopy Trees

Lianas (woody vines) reduce growth and survival of host trees in both temperate and tropical forests; however, the relative strength of liana-tree competition in comparison to tree-tree competition remains unexplored. When controlling for biomass, lianas may have greater competitive effects than trees because the unique morphology of lianas allows them to reach the forest canopy at relatively s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biology letters

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2017